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1.0 INTRODUCTION 

Manned exploration missions to Mars may involve aerodynamic braking from hyper- 

bolic approach speeds both at Mars and Earth. Atmospheric penetration at the 

anticipated approach velocities will subject entry vehicles to extreme thermal environ- 

ments . The associated heat shielding requirements will be of major importance in 

selecting an optimum mission course. In the hyperbolic entry situation, complicated 

interactions exist among the aerothermal phenomena that are commonly neglected or 
at least treated independently. Significant advances in the aerothermal technology are 
required to ensure efficient and reliable heat-shield designs. 

The problem of defining thermal protection requirements for Mars-mission entry 

vehicles was studied by Lockheed Missiles & Space Company for NASA under Contract 

NAS 2-1798. This report describes the scope of the study and briefly summarizes the 

principal results. A comprehensive review of the investigation is presented in the final 

report. 

2. STUDY OBJECTIVES 

The primary purpose of the study was the parametric determination of heat shielding 

requirements for manned entry at both Earth and Mars considering as variables entry 

velocity, vehicle volume, and vehicle weight. Secondary objectives were to delineate 

major technical problems and to indicate associated uncertainties in heat shield design. 

Subsidiary objectives were as follows: 

Study atmospheric characteristics and high temperature gas properties 

Define entry trajectories and establish aerodynamic limits on entry 

conditions 
Determine vehicle flow fields and heat transfer distributions 

Investigate performance characteristics of candidate heat-shield 

materials 

Define heat-shield designs and establish their thermal responses 

Evaluate the effects of uncertainties on shield designs 
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The vehicle configurations, entry situations, and parameter ranges to be considered 

in the investigation are summarized in Table I. 

3. RELATIONSHIP TO NASA PROJECTS 

The study was performed for the Ames Research Center of the NASA. It is a part of 
a continuing program of interplanetary mission studies. The results have direct appli- 

cation in the analysis of the Mars landing mission feasibility. Furthermore, they 

enable identification of problems for future research and they provide a basis for direct- 

ing design optimization studies. The basic data generated and the analysis methods 

developed have general application in planetary entry work. 

4. METHOD OF APPROACH 

Previous investigations of the significant physical phenomena associated with hyperbolic 

speeds have been limited. Consequently the initial effort in the study was devoted to the 

formulation of analysis procedures and to the computation of basic properties data. An 

attempt was made to place the proper emphasis on all aspects of the problem and to 

employ the most rigorous techniques-possible within the scope of study. The analysis 

procedures that were developed are sufficiently complex so as to require a high degree 

of automation in their application. To this end, all major computations were coded for 

digital computer solution and an efficient information flow process was developed. Even 

so, the number of parameters that must be considered in determining heat shielding 

requirements was large and required a careful scheduling of select cases within the 

wide spectrum of possibilities. Nylon phenolic, an efficient state-of-the-art ablative 

material, was adopted as a standard in the evaluation of the effects of mission variables. 

Emphasis was given to determination of the influence of entry conditions (velocity and 

corridor position) on shield weights. Importance was also assigned to the description 

of the influence of vehicle weight and volume. Examination of the effect of heat-shield 

material was limited to the extent necessary to show possible benefits accruing from 

use of advanced materials at the extremes of heat loading. A single configuration was 
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Table I 
SCOPE OF HEAT SHIELDING REQUIREMENTS STUDIES 

Vehicle 
Constraints 

Apollo 0.5 36 - 50 500 - 1,500 5,000 - 15,000 0 Minimum corridor 

Earth Lander Ml 0.5 36 - 65 500 - 1,500 5,000 - 15,000 width of 10 sm 

M2 1.0 36 - 75 500 - 1,500 5,000 - 15,000 0 Maximum deceleration 
of 10 g 

Apollo 0.1 16 - 40 1,000 - 2,500 35,000 - 70,000 0 Nylon phenolic shield 

Mars Lander Apollo 0.5 16 - 40 1,000 - 2,500 35,000 - 70,000 l 500” F maximum bond- 
line temperature 

Apollo 0.5 25 - 35 40,000 - 70,000 300,000-500,000 
Mars Orbiter Blunted Cone 0.5 25 - 35 40,000 - 70,000 300,000-500,000 



emissivity, boundary layer transition, atmospheric composition, and atmospheric 

structure , A total of approximately 100 distinct situations were examined. 

In order to correctly establish the effects of the parameters and uncertainties, point 

analysis procedures were used. In particular, detailed time histories of the environ- 

ment and shield response were computed in each case at a number of body stations 

sufficient to permit accurate evaluation of the total shield weight. 

5. BASIC DATA GENERATED AND SIGNIFICANT RESULTS 

The environmental phenomena experienced by vehicles entering the Martian and 

terrestrial atmospheres at hyperbolic speeds have been investigated and thermal pro- 

tection requirements have been examined. Principal results are as follows: 

Flight Mechanics 

Entry into the earth atmosphere upon return from a Mars mission can be accomplished 

by relatively simple maneuvers using the trimmed-lift, roll-control mode. Imposition 

of a log deceleration limit and a lo-sm corridor width requirement restricts the maxi- 

mum entry velocities with lift/drag ratios of 0.5 and 1.0 to about 57,000 ft/sec and 

68,000 ft/sec , respectively. 

Atmospheric braking appears to be an efficient means of orbital capture at Mars. With 

full positive lift to exit the atmosphere after constant altitude deceleration (a non- 

optimum maneuver), the injection velocity requirements for a 500 km circular orbit 

is about 300 ft/sec - a small fraction of that required for direct retro from hyperbolic 

approach velocities. 

Atmosphere Characteristics 

The equilibrium composition and thermodynamic properties of air were computed at 

small intervals over a range of pressures to a temperature of 45,OOO”R to provide 

accurate data for heat transfer analyses. An upper-bound emissivity model, account- 

ing for the important ultraviolet-deionization and atomic-line emission processes, was 
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selected from the several disparate results. High temperature thermodynamic and 
radiative properties were computed for several possible Mars gas mixtures. In the 
molecular radiation regime, the primary contribution to the radiation is from the CN 

ultraviolet bands. In the atomic radiation regime, carbon deionization is as important 
as oxygen and nitrogen deionization. The dependence of the radiance on carbon-dioxide/ 
nitrogen ratio is slight except at velocities below 30,000 ft/sec. 

Heat Transfer Analyses 

Several advanced techniques were developed to describe the heating experienced at 

hyperbolic entry speeds. For the entry situations considered, energy loss from the 

shock layer by radiative emission significantly alters the flow field. Temperature 
and velocity near the vehicle surface are reduced and the shock standoff distance is 
decreased, Most importantly, the radiative heat transfer to the vehicle surface is 

greatly reduced as shown in Fig. 1 for two representative situations. However, it 
is noteworthy that the cooling has relatively little effect on the radiative heat transfer 
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Fig. 1 Influence of Radiative Cooling on Radiative Energy Transfer 
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distribution normalized with respect to the stagnation value. For the Earth’s atmos- 

phere, the distribution remains essentially frozen when velocity and altitude are 

varied. Conversely, for the Mars atmosphere gas mixture, the radiative heat flux 

distribution changes appreciably in the velocity range where the transition from the 

molecular radiation regime to the atomic radiation regime occurs. 

The dominant emissions from the Martian and terrestrial gases are from relatively 

small portions of the spectrum. Thus, self-absorption of radiation in the shock-layer 

is important in some entry cases considered, even though the optical thickness based 

on the Planck mean-absorption coefficient is small. Ablation products injected into 

the boundary layer may further increase the extent of absorption. 

Convective heating is appreciably influenced by shock-curvature-induced vorticity . 

For slender vehicles traveling at high altitudes, the vertical layer (fluid emanating 

from the near-normal portion of the shock) is entrained by the boundary layer with 

a resultant increase in convective heating level, as depicted in Fig. 2. On the other 

hand the injection of gaseous ablation products greatly reduces convective heat load. 
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Fig. 2 Influence of Vorticity on Convective Heat Transfer 
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In fact, injection rates become sufficiently high during periods of intense radiation 

to cause ‘blow-off” of the thermal boundary layer and convection ceases. 

The radiative cooling and mass transpiration effects preclude the application of 

simple, closed-form correlation equations for the heat transfer to the vehicle sur- 

face. Figure 3 vividly demonstrates that for typical conditions the actual net heat 

transfer may be an order-of-magnitude less than that computed neglecting energy 

losses and assuming a cold, non-ablating wall. 
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Fig. 3 Comparison of Uncorrected Heat Input With Actual Heat Input 

Material Analyses 

An experimentally verified theoretical model for the thermochemical performance in 

air of nylon-phenolic, the reference material, was available at the outset of this study. 
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The validity of an extension of the theoretical model for description of material per- 

formance in Mars-like gas mixtures has been established in the present work. Thus, 

the necessity for reliance on gross, empirical techniques for prediction of material 

responses has been overcome. 

The performance theory for charring ablators provides a basis for optimizing the 

material formulation. In the hyperbolic entry environment a high char density is 

desirable to minimize erosion. Performance is enhanced by use of high-hydrogen- 

content organic polymers that evolve high-enthalpy gaseous products upon pyrolysis. 

A composite of graphite and polyethylene appears attractive from these considerations. 

Vehicle Heat-Shielding Requirements 

Atmospheric braking of hyperbolic entry vehicles appears thermally feasible provided 

that efficient configurations and heat shield materials are selected. Some typical 

results for the shielding requirements applicable to the Apollo configuration are: 

APOLLO SHIELDING REQUIREMENTS 

Mission 

Earth Landing 

Mars Landing 

Mars Orbital 
Capture 

Entry Vehicle 
Velocity Volume 
(ft/sec) (ft3) 

45,000 1,000 

35,000 1,750 

30,000 55,000 

Vehicle 
Weight 

(lb) 

10,000 

60,000 

400) 000 

Shield 
Weight 
Total 

Shield Vehicle 
Weight Weight 

(lb) (?b) 

1,500 15 

2,500 4 

20,000 5 

A comparison of heat-shield weights for various configurations for Earth entry is 

shown in Fig. 4. It can be seen that the highly blunt Apollo configuration remains 

attractive to velocities of about 50,000 ft/sec. The use of slender, high lift-to-drag 

ratio configurations such as the M2 to gain increased corridor width and hence make 

possible successful entries up to 68,000 ft/sec requires significantly greater heat 

shield weight. 
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Fig. 4 Comparison of Heat Shielding Requirements 
for Various Earth Entry Vehicles 

For a given configuration, it is found that heat shield weight does not increase 

drastically with increase of entry velocity over the ranges considered even when 

radiation dominates. This result is at first surprising, however it is explained in 

terms of material performance. Figure 5 shows that, for a representative location 

on the Apollo, a sixfold increase in heat load increases the required shield thickness 

less than 30 percent. The charring ablator performs more efficiently at higher heat 

flux levels. With regard to corridor position, shielding requirements are almost 

always m inimized by entering along the undershoot trajectory. 

Shield weight for a given payload is m inimized by efficient packaging, i. e., reduction 

of total volume. At a given value of the ballistic coefficient, heat shield section thick- 

nesses do not change appreciably with perturbation of size and volume, and thus the 
ratio of total heat shield weight to total vehicle surface area may be correlated in 

terms of the ballistic coefficient alone, as shown in Fig. 6. 
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The effect on shield weight of two of the more prominent environmental uncertainties 
that have been examined is shown in Fig. 7. Large uncertainties in gas emissivity 

appear relatively unimportant, at least for the entry situations considered in this 

study. The uncertainty in the occurrence of boundary layer transition is shown to 

be of somewhat greater importance. Uncertainties in the structure and composition 
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Fig. 7 Influence of Environmental Uncertainties on Heat 
Shield Requirements for M-l Vehicle 

of the Martian atmosphere are not influential in determining heat shielding require- 

ments for hyperbolic entry. On the other hand, the possible mechanical erosion of 

heat shielding material would have significant effect. Thick char layers are predicted 

considering chemical erosion alone. Spallation of char could result in a doubling of 

heat shield thickness. 

6. IMPLICATIONS FOR RESEARCH 

A number of basic problem areas and significant uncertainties have been encountered 

in the study. The aerothermal technology would benefit from: 
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Continued theoretical and experimental investigations of high temperature 

gas properties under non-equilibrium and non-ideal conditions 

Formulation of a numerical technique for description of non-adiabatic 

flow with self-absorption by non-grey gases 

Theoretical evaluation of the effects of ablation products on radiative 

energy transport both within the boundary layer and in the wake region 

Experimental investigations of the transition phenomena with surface 

roughness, mass injection, and wall-cooling conditions of flight 

simulated 

Development of rigorous analytic procedures for the evaluation of 

vorticity effect on convective heat transfer with mass injection 

Assessment of the effect of precursor radiation on the flow 

Improvement of material formulations guided by theoretical analyses 

Experimental determination of the environmental regimes where 

mechanical erosion of charring materials will occur to significant 

degree 

7. SUGGESTED ADDITIONAL EFFORT 

The following recommendations are made for further work in the area of heat- 

shielding requirements 

0 Study the effects of geometry variables to establish optimum vehicle 

configuration 

0 Investigate the influence of altitude maneuvering and lift modulation 

to establish optimal entry trajectories 

0 Conduct more detailed analyses of uncertainties on shielding 

requirements 
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Continued theoretical and experimental investigations of high temperature 

gas properties under non-equilibrium and non-ideal conditions 

Formulation of a numerical technique for description of non-adiabatic 

flow with self-absorption by non-grey gases 

Theoretical evaluation of the effects of ablation products on radiative 

energy transport both within the boundary layer and in the wake region 

Experimental investigations of the transition phenomena with surface 

roughness, mass injection, and wall-cooling conditions of flight 

simulated 

Development of rigorous analytic procedures for the evaluation of 

vorticity effect on convective heat transfer with mass injection 

Assessment of the effect of precursor radiation on the flow 

Improvement of material formulations guided by theoretical analyses 

Experimental determination of the environmental regimes where 

mechanical erosion of charring materials will occur to significant 

degree 

7. SUGGESTED ADDITIONAL EFFORT 

The following recommendations are made for further work in the area of heat- 

shielding requirements 

l Study the effects of geometry variables to establish optimum vehicle 

configuration 

l Investigate the influence of altitude maneuvering and lift modulation 

to establish optimal entry trajectories 

l Conduct more detailed analyses of uncertainties on shielding 

requirements 
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